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Modeling juve
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[OBJECTIVE |

To simulate juvenile sea turtle dispersal under
the combined effect of ocean currents and a
habitat-driven swimming activity.

Ocean data from global ocean models a _—
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Case study: Eastern F
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Spotila et al. (2000)
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“Adult sea turtles tend to exploit favorable foraging areas that they discovered
during their juvenile stages.”
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Testing different

30°N
20°N

10°N |

10°S|

20°Ss
30°S 3
40°S 2 o ‘ = =
| Surface currents | , Subsurface currents §
120°E 140°E 160°E 180° 160°W  140°W  120°W  100°W 80°W 120°E 140°E 160°E 180° 160°W  140°W  120°W  100°W 80°W
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18
Age (years) Age (years)

Here, the diving behavior of young individuals should be
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Investigating t
model evolutit

Quick dive into primiti

Equation of lagrangian motion of a trajectory :

Habitat definition : product of thermal
niche and food proxy availability

ax
T Varire + Vswim

Major question : How to describe Vi, as realistic as possible ?

hth‘hF

_Z(T(x,y,r)—n)z
hr(x,y,t) =e =T

F(x,y,t)
FO )

Current state of the model : Turtles swim toward habitat gradient

and habitat condition determines the velocity norm.

hp(x,y,t) = min (1,

cos

Vawim Gy, 6 = Vo[ = h(x, 7,01 (%8
sin T : temperature field (SST)

F : food proxy field (micronekton, npp)

6 = OByp, + random effect (Von Mises circular distribution)

A relatively simple model, but a challenge regarding changes possibilities.
The use of turtle tracking data is fundamental to make improvements.

MEAP "
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Using ocean model data to study

ax
dat

ax
dt

aX
= Vdrift + Vswim 2 Vewim= a Vdrift

: derived from tracking positions
Varige + estimated with physical models and reanalysis

tracking duration (years)

50°N “‘Q’* We use and analyze a dataset of 232 juvenile loggerhead
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Analysing swimming

Estimated swimming velocities tend to be very noisy :

- Construction of integrated signal to be analysed :
t

Xswim(t) = J Vswim (T)dt
0
- Represents the purposed active movement

- The integrated series are a step forward to
understand the turtle’s behavior
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Observing zonal swimmi
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Segments average zonal swimming

Analyze of [ u,(t)dt (zonal):
* Using gaussnan mixture models informs on velocmes pattern of westward migra

—— West swimming only: 0/ 73
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Analyze of [ v,(t)dt (meridional):
* Periodic behavior, likely under mfluence of d
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However, some modeling experiments with
purely thermal defined habitat gave improvec
interesting results to be confirmed.
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Conclusion

STAMM : a unique model unde ©

Density distribution change with basic warming of the ocean

A unique and evolving tool to model juvenile sea turtle
dispersal.

Model actively used the last few years (publications and
collaboration). ]

Tracking studies analysis offers leads for impro
specific attention to ocean biology models.

homogeneous warming of the ocean

Developments occurred in order
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Thank you




